Biomaterials Principles and Applications PDF

Biomaterials Principles

7.66 MB PDF

   Free Download Here


To make devices to replace a part or a function of the body in a safe, reliable, economic, and physiologically acceptable manner [Hench and Erthridge, 1982]. A variety of devices and materials presently used in the treatment of disease or injury include such commonplace items as sutures, needles, catheters, plates, tooth fillings, etc. Over the years, various definitions of the term biomaterials have been proposed. For example, a biomaterial
can be simply defined as a synthetic material used to replace part of a living system or to function in intimate contact with living tissue. The Clemson University Advisory Board for Biomaterials has formally defined a biomaterial to be “a systemically and pharmacologically inert substance designed for implantation within or incorporation with living systems.” Black defined biomaterials as “a nonviable material used in a medical device, intended to interact with biological systems” [Black, 1992]. Other definitions have included “materials of synthetic as well as of natural origin in contact with tissue, blood, and biological fluids, and intended for use for prosthetic, diagnostic, therapeutic, and storage applications without adversely affecting the living organism and its components” [Bruck, 1980] and “any substance (other than drugs) or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as a part of a system which treats, augments, or replaces any tissue, organ, or function of the body” [Williams, 1987]. By contrast, a biological material
is a material such as skin or artery, produced by a biological system. Artificial materials that simply are in contact with the skin, such as hearing aids and wearable artificial limbs, are not included in our definition of biomaterials since the skin acts as a barrier with the external world. According to these definitions one must possess knowledge in a number of different disciplines or collaborate with individuals from a wide variety of different specialties in order to properly develop and use biomaterials in medicine and dentistry (see Table 1). Table 2 provides some examples of the uses of biomaterials, which include replacement of a body part that has lost function due to disease or trauma, to assist in healing, to improve performance, and to correct abnormalities. The role of biomaterials has been influenced considerably by advances in many areas of biotechnology and science. For example, with the advent of antibiotics, infectious disease is less of a threat than in former times, so that degenerative diseases assume a greater importance. Moreover, advances in surgical technique and instruments have permitted materials to be used in ways that were not possible previously. This book is intended to familiarize the reader with the uses of materials in medicine and dentistry and provide an explanation of the scientific basis for these applications.

If you found this book helpful then please like, subscribe and share.


Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.